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1. Introduction

The geometry of flux backgrounds in string theory has recently become clearer. For exam-

ple, the geometry underlying the most general (2,2) nonlinear sigma model has been long

described as “bihermitian” [1]. It describes what happens when the complex structures

I± felt by the left- and right-movers are allowed to be different, and, crucially, when a

Neveu-Schwarz (NS) three-form H is introduced. For I+ = I− and H = 0 the manifold

will be Kähler as familiar; but in general, for H 6= 0, the manifold will not be Kähler with

respect to either complex structure. This leads to some loss of computational power.

Twenty years after its definition, however, bihermitian geometry has been reinterpreted

as generalized Kähler geometry [2].1 Among the applications of the new approach are new

constructions of (2,2) sigma models and an expression for the off-shell action (extending

the usual
∫

d4θK for the Kähler case) in the case in which I+ and I− do not commute [3].

It has also been applied to topological sigma models (for example [4 – 6]) and to N = 2

NS vacua in supergravity [7]. The broader field of generalized complex geometry [8, 2]

1What we call generalized Kähler geometry in this paper is called twisted generalized Kähler geometry

in [2].
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has also led to a similar classification of Ramond-Ramond N = 1 vacua [9] and to related

developments concerning brane calibrations [10, 11].

Most of these developments are formal; it would be nice to have tools to produce explicit

examples of flux compactifications. In the case without fluxes one such a tool is the gauged

linear sigma model [12], which leads to the so-called Kähler quotient construction — a

particular case of hamiltonian reduction [13].

It is the aim of this paper to generalize this useful tool to the case with H-flux.

Specifically, we work out the conditions for (2, 2) supersymmetry of the general gauged

sigma model.

As we have mentioned, the most general (2,2) ungauged sigma model was written

in [1]. However, unless the two complex structures commute, the off-shell formulation of

this model requires the introduction of complicated semi-chiral multiplets. For this reason,

the (2,2) gauged sigma model was analyzed in [14] only in the case [I+, I−] = 0, and the

general case was left alone.

While at that time this omission was justifiably perceived as that of a pathological

case, new developments have changed the situation somewhat. As an example, in the

more general setting of Ramond-Ramond (RR) vacua, cases with non-commuting complex

structures are relevant for example for supergravity duals to superconformal theories (as

recently demonstrated for example in [16] for the beta-deformation in [17] and pointed out

on general grounds in [18] and [11]). One can expect the generalized Kähler case to provide

a stepping stone towards finding such solutions [19], much as the process of adding branes

on the tip of a conical Calabi-Yau gives Sasaki-Einstein gravity duals.

We perform our analysis on shell, even though the problem of finding the general off-

shell action in the non-commuting case has now been solved in [3], as mentioned above.

The off-shell approach to gauging (2, 2) sigma-models has been explored in the very re-

cent paper [20]. We first perform the physical computation in section 2. Although the

result is formally identical to the commuting case, the computation is lengthy, and de-

tails are left to the appendix A. We then proceed to interpret the result geometrically in

section 3. In this latter task our work is facilitated by a series of papers that appeared

last year [21 – 26] which analyzed the conditions for generalized complex and generalized

Kähler reduction. The motivation for those papers was mathematically clear: given that

generalized complex geometry has symplectic geometry as an important special case, and

that hamiltonian reduction is an important result in symplectic geometry, it is natural to

wonder if a generalized complex (or Kähler) structure can be reduced too.

We refer in particular to [22], which contains a theorem whose hypotheses are exactly

the same as the conditions we find for the (2,2) gauged sigma model. We find, then, perfect

agreement between that mathematical theorem and physical expectations.

Another advantage of having such mathematical literature available (one which in fact

constituted a major motivation for this work) is the possibility to tap into the reservoir

of explicit examples those papers contain. It turns out, unfortunately, many of them

are unsuitable for physical consideration, for reasons we discuss; we do, however, provide

illustrations for several of the general features. In particular, we provide an example with

flux which is a one-parameter deformation of the standard bihermitian structure on S3×R;
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from the physical viewpoint, it is a (2, 2) deformation of the near-horizon geometry of the

NS five-brane in flat space. We also sketch an example of reduction without flux but with

non-commuting complex structures.

One possible direction in which it would be interesting to extend the present paper is

the addition of a potential term to the sigma model. Similarly to [12], this should produce

more interesting examples, presumably not yet considered in the mathematical literature.

2. The (2,2) gauged sigma model

In this section, we describe the gauged sigma model in terms of (1,1) superfields. In

the following section we will show how this is connected to the existence of a moment

map. We will start, however, with a subsection showing how already the ungauged sigma

model implies the existence of two moment maps. We anticipate that the condition for the

existence of the gauged sigma model will be stronger, in that these two moment maps are

to be equal.

2.1 The supersymmetric ungauged sigma model and two moment maps

We start from the ungauged (1,1) sigma model whose target is a Riemannian manifold M

equipped with a closed three-form H:

−

∫

Σ
gmnD+φmD−φn d2xd2θ +

∫

B

Hmnp∂tφ
mD+φnD−φp d3xd2θ (2.1)

where the three-manifold B is such that ∂B = Σ, and t is a local coordinate in B normal

to Σ, such that ∂
∂t
|Σ is an outward normal. If one imposes an extended supersymmetry

δφm = ǫ+D+φnIm
+ n + ǫ−D−φnIm

−n . (2.2)

one gets [1] that I± are complex structures, that the fundamental forms ω±
mn ≡ gmpI

p
±n

are antisymmetric, and that

∇±ω± = 0 , (⇒ dω± = ±ιI±H) (2.3)

where ∇± are covariant derivatives with connection ΓLC ± 1
2g−1H. (This computation is a

particular case of the one we perform later on for the gauged model, so we do not review

it here.) This geometry is called bihermitian geometry because the forms ω± make the

geometry hermitian in two ways; it has been studied by mathematicians (see for exam-

ple [27]) and then shown to be equivalent to generalized Kähler geometry (to be reviewed

in section 3) in [2].

If one further imposes invariance of the model under a one-parameter family of diffeo-

morphisms generated by a vector field ξ, one also gets [14]

LξH = LξI+ = Lξω+ = 0 . (2.4)

In particular it follows that (locally)

ιξH = dαξ (2.5)
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a for αξ some one-form.

Introduce now, temporarily, the operator ∂ and the (p, q) form decomposition for I+.

Following [15, 14], rewrite LξI+ = 0 as

[∂, ιξ0,1 ] = 0 ; (2.6)

taking the (1, 0) part of (2.3) and using (2.6), one gets ∂(ιξ0,1ω + iα1,0) = 0, which locally

implies

ιξ0,1ω + iα1,0 = ∂f (2.7)

for some function f . Summing this with its complex conjugate, and using that on a function

dc = ιI+d, one gets

ιξω + ιI+(α + d(Imf)) = dRef . (2.8)

We can now notice that α is only defined up to exact forms anyway (see (2.5)), and reabsorb

dImf ; we will then define Ref ≡ µ and call it generalized moment map. We ask the reader

to accept the name for the time being: it will be explained in the next section.

This discussion, however, could be repeated verbatim for the − sector, leading, at this

stage, to two moment maps µ±. We will see shortly that gauging the invariance under ξ

requires these two to be equal.

2.2 Gauging: review of the bosonic case

On our way to gauging (2.1), we now review quickly the bosonic case, following [28, 29].

The bosonic action reads

S = −
1

2

∫

Σ
gmndφm ∧ ∗dφn +

∫

B

H ; (2.9)

again we call ξ the vector under which the model is invariant, which means that ξ is an

isometry (Lξg = 0) and that LξH = 0. As always, although the action contains an inte-

gral over the three-dimensional manifold B, the equations of motion are two-dimensional,

because a field variation Lδφ acts as follows:

Lδφ

∫

B

H =

∫

B

{d, ιδφ}H =

∫

B

d(ιδφH) =

∫

Σ
ιδφH (2.10)

where we have used the “magic Cartan formula”

Lv = dιv + ιvd (2.11)

valid for any vector field v.

Gauging the model means that we want to promote invariance under ξ to an invariance

δφ = λξ(φ) , (2.12)

with λ a function on Σ. This is accomplished by introducing a vector field A which

transforms as

δA = −dλ . (2.13)
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To write the gauged action, it is convenient to introduce the covariant derivative dA =

dφ + Aξ, so that dA(f(φ)) = df(φ) + Aξm ∂f(φ)
∂φm . It is covariant in the sense that

δ(dAφ) = λdA(ξ) .

One is familiar with various particular cases of this covariant derivatives, notably the case

in which the components of ξ are linear in φ as in most gauge theories, and the case in

which they are constant, which appears for example in many gauged supergravity theories.

One is tempted to change all the derivatives d in the action (2.9) into covariant dA’s;

this, however, would spoil the Stokes argument in (2.10). One way around this is to

introduce a compensating three-dimensional integral. The other way, which we will use in

this paper, is to write the gauged action as

S = −

∫

Σ

(

1

2
gmndAφm ∧ ∗dAφn + α ∧ A +

1

e2
dA ∧ ∗dA

)

+

∫

B

H (2.14)

with e being the gauge coupling and α defined by (2.5) (from now on we will drop the

subscript ξ on α). When varying the last term in parentheses in (2.14) with respect to φ,

one now gets
∫

Σ
{ιδφ, d}αA =

∫

Σ
(ιδφιξHA − ιδφαdA) ;

the first term completes the variation of H in (2.10) so that one gets

δφm Hmnpd
Aφn ∧ dAφp

from their combination. For the action to be invariant under the local transforma-

tions (2.12), (2.13), it actually also turns out [28] that the condition

ιξα = 0 (2.15)

has to be satisfied. We will find it later in the supersymmetric case.

It is interesting to consider what happens if one follows the renormalization group flow

in this model. As in [12], the gauge coupling e diverges in the infrared limit, and hence

the kinetic term is negligible. This makes the gauge field A an auxiliary field, and one

can integrate it out. If one does that, one gets a sigma model with target M ′ = M/U(1),

where the U(1) action is generated by ξ. The metric g′ and the NS three-form H ′ on the

manifold M ′ are given by

g′mn = gmn − ξ2ξ̃mξ̃n + ξ−2αmαn , H̃ ′ = H + d(ξ̃ ∧ α) (2.16)

where

ξ̃m =
1

ξ2
gmnξn

is the one-form dual to ξ (so that ιξ ξ̃ = 1) and ξ2 = gmnξmξn. For α = 0, the form of

the metric in (2.16) would be the metric obtained on the quotient by the Kaluza-Klein

procedure. The extra piece is not inconsistent, however, since the metric still satisfies
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ξmg′mn = 0 thanks to (2.15), hence it is well-defined for tangent vectors on the quotient

manifold (which are defined as equivalence classes of tangent vectors on M under the

equivalence relation v ∼ v + cξ, c ∈ R). To understand better the geometric meaning

of (2.16), let us rewrite g′ as

g′mn = gpqQ
p
+mQq

+n = gpqQ
p
−mQq

−n , where Qm
±n ≡ δm

n − ξm

(

ξ̃n ±
α

ξ2

)

. (2.17)

The matrices Q± are projectors, i.e. Q±Q± = Q±. Their kernel is one-dimensional and

consists of vectors proportional to ξ. The image consists of vectors v satisfying the condition

gmnvmξn±α(v) = 0. It is easy to see that in any equivalence class of tangent vectors under

the relation v ∼ v + cξ there is a unique representative which belongs to the image of Q+

(or Q−). Thus the formula for the metric g′ can be described in words as follows. Consider

two vectors v′1,2 on the quotient manifold M ′, whose scalar product we want to compute.

We can think of them as tangent vectors on M defined up to shifts by ξ. In each of

the two equivalence classes we find the (unique) representatives v1 and v2 which satisfy

〈vi, ξ〉+α(vi) = 0 (we chose to work with Q+ for definiteness). We define the scalar product

of v′1 and v′2 to be the scalar product of v1 and v2 with respect to the metric g. (In the KK

procedure, one would take representatives v1,2 which are orthogonal to ξ). This is what is

expressed by (2.17).

We will see below that the projectors Q± in (2.17) play a similar role for all tensors in

the gauged supersymmetric model.

Let us also notice that H ′ in (2.16) is a basic form, and hence it also lives on the

quotient M ′. By definition, a basic form is annihilated both by ιξ and by Lξ. For the

first of these, one has to use (2.5), (2.15) and the identity ιξd(ξ̃) = 0 (which can be seen

most easily by taking coordinates adapted to the fibration, in which ξ = ∂ψ for an angular

coordinate ψ). LξH
′ = 0 then follows easily from H ′ being closed and from (2.11).

2.3 The gauged supersymmetric action

We will now introduce the supersymmetric model, much along the lines of the bosonic

gauged model described in the previous subsection. In analogy to the introduction of A

there, we want to introduce an N = 1 vector multiplet Γα to gauge (2.1). Since later

we want to require that the action be N = 2-supersymmetric, we also introduce an extra

N = 1 scalar multiplet S, which together with Γα should form an N = 2 vector multiplet.

All in all the action we introduce reads

−

∫

Σ
gmnDΓ

+φmDΓ
−φn d2xd2θ +

∫

B

Hmnp∂tφ
mD+φnD−φpd3xd2θ (2.18)

+

∫

Σ

(

1

e2
(WαW α + DαS DαS) − S µ(φ) − αm(D+φmΓ− + D−φmΓ+)

)

d2xd2θ

where the covariant derivative

DΓ
α = Dα + Γαξm ∂

∂φm
;

for example DΓ
αφm = Dαφm + Γαξm.

– 6 –
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So far this is a (1,1) model. We now want to see what are the consequences of imposing

a second supersymmetry in both left-moving and right-moving sectors, similarly to the

result in [1] quoted around equation (2.3).

2.4 The second supersymmetry transformation

The second supersymmetry transformation for all the fields is easy to guess. Let us start

from the N = 2 vector, made up by Γα and S. If we had an N = 2 superfield V , we could

expand its dependence on θ2
α as

V = v − iθ α
2 Γα + iθ+

2 θ−2 S

where v,Γα, S are functions of θ1 only, and the factors are for later convenience. The

gauge transformation for such a superfield consists of shifting V → V + ReΛ, with Λ a

chiral N = 2 superfield. In particular, we can use this gauge freedom to send V to an

“N = 1 Wess-Zumino gauge” in which v = 0, by choosing Λ so that Λ| θα
2

=0
= v/2. This

gives

V → −iθα
2 Γα + θ+

2 θ−2 (iS − D2v) (2.19)

In N = 2 terms, the second supersymmetry transformation is easy to express as δ2V =

ǫαD2 αV| θα
2

=0
. This gives the transformation laws

δ2(v,Γα, S) = −ǫβ
2 (iΓβ, (∂αβv − ǫαβS), −i∂αβΓα) (2.20)

Now, by starting from (0,Γα, S) and composing (2.20) and (2.19), one gets

δΓα = ǫαS , δS = ǫαWα (2.21)

where we have defined

Wα = DβDαΓβ . (2.22)

As for the φm, we will generalize in the simplest way the supersymmetry transforma-

tions in (2.2):

δφm = ǫ+DΓ
+φnIm

+ n + ǫ−DΓ
−φnIm

−n . (2.23)

This is in fact the only possible expression for the second supersymmetry transformation

which is gauge-invariant and compatible with dimensional analysis.

It is not very difficult to check that the putative second supersymmetry transformation

in (2.23) commutes with the one implicit in the superfield notation; it follows in a standard

way from the fact that D and Q commute. Much less trivial is the fact that the second

supersymmetry transformation obeys by itself the supersymmetry algebra. But first we

will require that it leaves our action invariant.

2.5 Invariance of the action

First of all, one can check that supersymmetry variations of the (DαS)2 and (Wα)2 terms

in (2.18) annihilate each other. To check this, one needs to use the identity DαWβ = DβWα

which follows from DαW α = 0, which in turn follows from (A.1).
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The other terms contain φ and are much more involved. The result is that for the

action to be supersymmetric the following has to be satisfied:

(ω±)t = −ω± , ∇±ω± = 0 ; (2.24)

Lξg = Lξω = 0 , ω±ξ ∓ It
±α = dµ , ιξα = 0 (2.25)

where we recall that ω±
mn ≡ gmpI

p
±n. We have also used (ωξ)m = ωmnξn for −(ιξω)m.

Notice that the conditions in the first line, (2.24), were already present for the ungauged

model, as mentioned in section 2.1; the second line, (2.25), contains the conditions specifi-

cally arising upon gauging.

Actually, by looking at the second equation in (2.25), we recognize that it was almost

implied (locally) by the invariance of the ungauged model; the difference is that, at that

point, one could only derive the existence of two separate moment maps. What we are

finding here is that to write down a supersymmetric gauged model those two moment maps

have to be equal. This can be traced back to the fact that in the gauged action (2.18)

there is only room for one function µ(φ), and not for two.

2.6 Supersymmetry algebra

We now require that the transformations defined in section 2.4 satisfy the right supersym-

metry algebra on-shell.

In fact, they only do so up to gauge transformations. Namely, in appendix A we show

that (2.20), (2.21) and (2.23) satisfy

[δ1, δ2]S = −2i(ǫ+
1 ǫ+

2 ∂++ + ǫ−1 ǫ−2 ∂=)S ,

[δ1, δ2]Γα = −2i(ǫ+
1 ǫ+

2 ∂++ + ǫ−1 ǫ−2 ∂=)Γα + Λ , (2.26)

[δ1, δ2]φ
m = −2i(ǫ+

1 ǫ+
2 ∂++ + ǫ−1 ǫ−2 ∂=)φm − Λ ξm ,

with a gauge transformation Λ that happens to be

Λ = 2ǫ+
1 ǫ+

2 D+Γ+ +
(

ǫ1
+ǫ2

− + ǫ2
+ǫ1

−

)

(D+Γ− + D−Γ+) + 2ǫ−1 ǫ−2 D−Γ− (2.27)

if the following conditions are satisfied:

(I±)2 = −1 , Nij(I±) = 0 ; LξI± = 0 , (2.28)

Nij being the Nijenhuis tensor. This time, the only condition really specific to the gauged

model is the last one, whereas the first two (that I± are complex structures) already arise

for the ungauged model.

2.7 The flow to the infrared

As in the bosonic case, the renormalization group flow makes the kinetic term for Γ± and

S in (2.18) negligible and Γ± and S non-dynamic. Integrating out Γ± then gives

Γ± = −(ξngmn ± αm)D±φm (2.29)
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which will be useful later. At the same time S becomes a Lagrange-multiplier superfield

which constrains the bosonic fields to the hypersurface µ(φ) = 0. Hence the infrared limit

is an ungauged sigma-model whose target M ′ is the quotient of the hypersurface µ = 0:

M ′ = {µ = 0}/U(1) (2.30)

as familiar from [12]. The formulæ for g′ and H ′ in (2.5) are still valid, with a similar

interpretation; the only extra step is that the vectors v′ in the discussion after (2.17) have

to be tangent to {µ = 0}.

It is instructive to see what happens to the second supersymmetry transformation in

the infrared, when we integrate out the fields Γ and S as in (2.29). One gets the usual

transformations in (2.2), with complex structures

I
′ m
± n = Im

± pQ
p
±n (2.31)

with Q± given in (2.17). The geometric meaning of these formulas is as follows. Consider

a tangent vector v′ on the quotient M ′ given by (2.30). Again since Q±ξ = 0, this can

be thought of as a vector on {µ = 0} defined modulo v′ → v′ + λξ. There is a unique

representative in the equivalence class such that gmnξmvn ± α(v) = 0. Now one can act

on this representative with I± to get a new vector on M ; one can verify that this vector

is tangent to {µ = 0} by computing ∂mµ I
′ m
± n = 0. This is done by noticing that Q±

in (2.17) can be rewritten, using the second equation in (2.25), as

Qm
±n = δm

n −
ξm

ξ2
Ip
±n∂pµ

and by noticing that ∂mµ Im
± nξn = ξ2 (using this time both the second and third equation

in (2.25)). One can now project the vector back to the quotient M ′; hence we have obtained

a linear map from TM ′ to itself, and this map is the complex structure on M ′.

3. Geometrical interpretation

We are now ready to reinterpret the conditions we got for the existence of a gauged sigma

model in terms of generalized geometry. The ungauged analogue of this is the equivalence

between bihermitian geometry and generalized Kähler geometry proved in [2]. Therefore

we first give a lightning review of this correspondence. For more details, see [2].

3.1 Bihermitian and generalized Kähler geometries

An almost generalized complex structure J on a manifold is an endomorphism of T ⊕ T ∗,

squaring to -1, and hermitian with respect to the metric

I =

(

0 1

1 0

)

on T⊕T ∗. It follows that it has eigenvalues ±i; call them LJ and L̄J . The so-called twisted

Courant bracket is the derived bracket [30] on T⊕T ∗ with respect to the differential d+H∧,
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where H is a closed three-form. Now, if LJ is closed with respect to the twisted Courant

bracket, one says that J is twisted integrable.

If we have two commuting generalized complex structures J1,2 such that their product

M ≡ IJ1J2 is a positive definite metric on T ⊕T ∗, we say that the manifold is generalized

Kähler.

The reason this geometry is relevant for us is that such a pair J1,2 can be shown to

have the form

J1,2 =
1

2

(

I+ ± I− −(ω−1
+ ∓ ω−1

− )

ω+ ∓ ω− −(I+ ± I−)t

)

(3.1)

for some bihermitian structure defined by complex structures Im
+n and two-forms ω±; in

particular, twisted integrability of J1,2 is equivalent to the integrability of I± and dω± =

±ιI±H (which we had in (2.3)).

Alternatively, locally one can replace twisted integrability with respect to H with

ordinary integrability, and replace J1,2 with their so-called b-transform:

J1,2 →

(

1 0

b 1

)

J1,2

(

1 0

−b 1

)

.

The Kähler case is recovered in these formulæ by taking H = 0, I+ = I− and ω+ = ω−.

Finally, let us mention a construction that we will need in section 4. To any generalized

complex structure J one can associate locally an inhomogeneous differential form Φ (called

pure spinor) with certain special properties . There are two features of this correspondence

that we will need later.

The first is that twisted integrability for J translates into the existence of a one-form

η and a vector field v such that (d + H∧)Φ = (η ∧ +ιv)Φ.

The second one concerns the type of a pure spinor Φ. This is defined as the smallest

degree of a homogeneous component of Φ. It can be shown [2] that the type of a pure

spinor Φ is equal to the number of i-eigenvectors of the corresponding J of the form (v, 0)t

— that is, the dimension of the intersection of the i-eigenspace of J with T .

For more details, again see [2, 8].

3.2 Generalized moment map

After having reviewed how the conditions from the ungauged sigma model can be cast in

the language of generalized Kähler geometry, we will now look at the conditions coming

from the gauged (2,2) sigma model.

First we recall what an ordinary moment map is. If a vector preserves a symplectic

form ω (Lξω = 0), one has by (2.11) that dιξω = 0. Then locally one has

ιξω = −dµ (3.2)

for some function µ. This function is called the moment map.

Consider now the second equation in (2.25):

ω±ξ ∓ It
±α = dµ . (3.3)
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If one takes sum and difference of these equations, one gets

(

0

dµ

)

=
1

2

(

I+ − I− −
(

ω−1
+ + ω−1

−

)

ω+ + ω− −(I+ − I−)t

)

(

ξ

αξ

)

= J

(

ξ

αξ

)

. (3.4)

(In the notation of [2], J = J2.) In other words, J (ξ + α) = dµ. This is equivalent to

J (ξ + α − idµ) = i(ξ + α − idµ), or in other words

ξ + α − idµ ∈ LJ . (3.5)

This is exactly the definition of a generalized moment map in [22]. An action which admits

a generalized moment map is called a generalized hamiltonian action.

This name is well motivated: in the Kähler case, I+ = I− and J in (3.4) becomes

(

0 −ω−1

ω 0

)

so that α = 0 and dµ = ωξ, just as in (3.2).

We would like to emphasize that the existence of the generalized moment map puts

a strong additional constraint on the vector field ξ and the corresponding one-form α,

even assuming that ξ preserves all the tensors involved. This is in contrast with the Kähler

case, where the moment map always exists locally, though there may be global obstructions

coming from the nontrivial topology of the target manifold. In the case when H 6= 0, if

we wanted to gauge while preserving only N = (2, 1) supersymmetry, the situation would

be similar: locally we can always solve equation (2.7) for f , while globally we may find

an obstruction living in the Dolbeault cohomology group H1
∂(M). But in the N = (2, 2)

case we find an extra strong constraint coming from the requirement that right-moving and

left-moving moment maps be identical. We have shown above that this physical constraint

corresponds to the requirement that the action by ξ be generalized hamiltonian in the sense

of [22].

Another condition in (2.25) was that ιξα = 0. From (3.5), since LJ is isotropic (that

is, the metric I =
(0 1
1 0

)

is zero when restricted to LJ ), we know that ιξ(α − idµ) = 0.

Taking the real part, we obtain the desired relation, which therefore is not independent.

If we had considered a quotient by a group H more complicated than U(1), this relation

would have been non-trivial (it would have corresponded to the condition that the moment

map be equivariant in [22]).

As for the remaining conditions in (2.25), (2.28), together they say

LξJ1,2 = 0 . (3.6)

Hence we have now reinterpreted all the conditions for on-shell (2,2) supersymmetry

of the gauged sigma model in terms of generalized Kähler geometry. To summarize:

• the manifold has to be generalized Kähler (just like in the ungauged case);

• ξ has to preserve the generalized Kähler structure (eq. (3.6));
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• a generalized moment map ξ (with one-form α) has to exist for the action of ξ.

Looking at [22], we find that these are precisely the hypotheses for their Proposition

12. Hence the quotient by ξ inherits a twisted generalized Kähler structure. Above we have

determined the bihermitian structure on the quotient using physical methods (integrating

out the fields Γ and S). One possible way to read our result is as a physical proof of the

theorem in [22].

4. Examples

We give here a few very simple examples, taking inspiration from some of the mathematical

papers on generalized Kähler reduction.

1. Perhaps the simplest twisted generalized Kähler structure is the one living on the

Hopf surface which is topologically S3×S1 [31, 2]. This can be described by C
2−{0} with

complex coordinates z1, z2, quotiented by zi → 2zi. The two complex structures I± give

respectively i, i and i,−i on ∂z1
, ∂z2

, and hence they commute. The three-form flux H is

the volume form of S3. If we let z1 = r sin λ eiφ1 , z2 = r cos λ eiφ2 , where λ ∈
[

0, π
2

]

and

both φ1 and φ2 have period 2π, then the metric is

ds2 =

∑2
i=1 dzidz̄i

r2
=

dr2

r2
+ dλ2 + sin2 λdφ2

1 + cos2 λdφ2
2.

The three-form H is

H = sin 2λdλdφ1dφ2.

If we do not quotient by zi → 2zi, we get the product metric on S3 × R. In the context of

string theory, it describes the near-horizon geometry of the Neveu-Schwarz fivebrane.

This geometry has SU(2) × SU(2) × R isometry group, where SU(2) × SU(2) acts on

S3 ≃ SU(2) by right and left translations, while R acts by r → ret. One could try to

reduce this model either along one of the left-invariant vector fields on S3 or along r ∂
∂r

. It

turns out that this is not possible: even though these vector fields preserve all the tensors

concerned, their action is not generalized hamiltonian — that is, no µ exists so that (3.4)

is satisfied. One can see this in the following way. From (3.3) one can derive

[I+, I−]g−1α = (2 + {I+, I−})ξ , (4.1)

an equation that we will need again in the appendix. If the two complex structures com-

mute, the left hand side is zero; also, the right hand side then becomes proportional to

Pξ ≡ (1/2)(1+ I+I−)ξ. Now, I+I− is an almost product structure [1], and P is a projector

defined by it; so we have found that ξ is along one of the two subspaces defined by the

almost product structure. This is a general result. Its physical interpretation is that, when

the model can be written without using semi-chiral multiplets, the gauging may involve

either only the chiral or only the twisted chiral multiplets.

Coming back to S3×R, from the explicit form of I± given above one sees that ξ should

either involve only z1 or only z2. Of course the two possibilities are equivalent, so let us pick

the first one and write ξ = iz1∂z1
− iz̄1∂z̄1

. The reduction along this vector field has been
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considered by S. Hu [24]. Let us describe this example in some detail; below we modify it

to produce a new family of generalized Kähler structures on S3 ×R and S3 ×S1. First we

need to choose a one-form α which solves the equation iξH = dα. The choice which leads

to a hamiltonian action turns out to be

α = cos2 λdφ2.

Note that this form is smooth everywhere on S3. The corresponding moment map turns

out to be

µ = − log r + const.

Thus the zero-level of the moment map is a submanifold given by r = const, which is a

three-sphere. The quotient of this submanifold by the vector field

ξ =
∂

∂φ1

can be parametrized by λ and φ2 and can be identified with a disc. The reduced metric

turns out to be

dλ2 + tan2 λdφ2
2.

This is precisely the metric which corresponds to the N = 2 minimal model

SU(2)/U(1) [32]. This is hardly surprising: the first step in the generalized Kähler re-

duction in this case amounts to fixing r to be constant, thereby reducing the theory to the

N = (1, 1) SU(2) WZW model, while the second step consists of gauging the adjoint action

of the maximal torus of SU(2) and integrating out the gauge N = (1, 1) supermultiplet,

which gives the supercoset SU(2)/U(1).

We can modify the above construction to produce a one-parameter family of generalized

Kähler structures on S3 × R and S3 × S1. Consider S3 × R × R
2, where we regard R

2 as

a flat Kähler manifold with a complex coordinate z3 = x3 + iy3 and a metric ds2 = |dz3|
2.

Let us quotient this generalized Kähler manifold by a vector field

iz1
∂

∂z1
− iz̄1

∂

∂z̄1
+ ζ

∂

∂y3
,

where ζ is an arbitrary real number. (More generally, we could consider a product S3 ×

R × Y , where Y is a Kähler manifold with a U(1) symmetry). The moment map is now

µ = − log r − ζx3 + const.

The equation µ = 0 allows to express x3 in terms of r, so the quotient of the submanifold

µ = 0 can be naturally identified with S3 × R parametrized by r, λ, φ1, φ2. The reduced

metric is
dr2

r2

(

1 +
1

ζ2

)

+ dλ2 +
ζ2 sin2 λdφ2

1 + cos2 λ(1 + ζ2)dφ2
2

sin2 λ + ζ2
.

In the limit ζ → ∞ it reduces to the standard metric on S3 × R. The three-form H ′ on

the reduced manifold is

H ′ = sin 2λdλdφ1dφ2 + d(ξ̃ ∧ α) = sin 2λdλdφ1dφ2 + d

(

sin2 λ cos2 λdφ1dφ2

sin2 λ + ζ2

)

.
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Note that the reduced metric is invariant with respect to r → ret, so we can make

periodic identification of log r and produce a one-parameter deformation of the standard

generalized Kähler structure on S3 × S1. We can compute the corresponding forms ω′
±

following the same geometric procedure as for the metric g′: we restrict ω± to the hyper-

surface µ = 0 and define the value of ω′
± on the vectors v′1,2 tangent to the quotient to be

the value of ω± on the specially chosen representatives of v′1,2 (those which lie in the image

of Q±). In this way we obtain:

ω′
+ = −

1 + ζ2

sin2 λ + ζ2

[

sin λ cos λ

(

ζ2

1 + ζ2
dλdφ1 − dλdφ2

)

+ sin2 λ
drdφ1

r
+ cos2 λ

drdφ2

r

]

.

One can also compute the complex structure I ′+; by finding the (1, 0) forms with respect

to this complex structure and integrating them, one obtains complex coordinates z′1+ =

r1+ζ−2

sinλ eiφ1 , z′2+ = r cos λ eiφ2 = z2. The form ω′
− and the complex structure I ′− are

obtained from ω′
+ and I ′+ by changing φ2 → −φ2.

2. We now want to give an example without NS flux, but with non-commuting complex

structures. For this, we turn to [23, 21]. These authors apply to C
k a procedure devised

in [2] to deform an ordinary Kähler structure into a generalized Kähler one. To describe

the idea we will need the pure spinors Φ introduced in section 3.1. The pure spinors for the

initial Kähler case corresponding to the generalized complex structures (3.1) read Φ1 = Ω,

Φ2 = eiω, where Ω is the (k, 0) form (it would in general only exist locally, but we are

considering C
k) and ω is the Kähler form. Now the deformation is described by

Φ1 → exp
[

βij
(

∂i − iωik̄dz̄k̄
)(

∂j + iωjl̄dz̄ l̄
)]

Φ1 ,

where β is a holomorphic Poisson bivector. It so happens that the same operator acting

on Φ2 leaves it invariant.

Choosing different bivectors β and reducing along different vector fields ξ produces

many examples of generalized Kähler structures on a certain class of toric manifolds (not

on all, because of the condition that the bivector β be holomorphic Poisson). Unfortunately,

it appears that for all these examples the generalized Kähler structure before reduction is

defined not on all of C
k, but on some open set obtained by excluding a lower-dimensional

submanifold (defined by a real equation). For instance, the examples in [23] start with C
3

and reduce it by the action zi → eiψzi, to yield a generalized Kähler structure on CP
2.

In order for the generalized Kähler structure to be invariant, one has to take the Poisson

bivector to have degree two in the zi, so that Φ1 is homogeneous of degree 3. The Poisson

bivector being non-constant causes the norm of Φ1 go to zero on a certain locus and the

generalized Kähler is not well-defined there.

Mathematically this is harmless, since one can usually arrange so that the hypersurface

µ = const does not intersect with the troublesome locus. Physically, however, the model

one starts with has to be defined on the whole of the manifold in order for the gauged

sigma-model to make sense.

A way to circumvent this problem is as follows. Let us start from C
4 and take the

(integrated) action of ξ to be (z1, z2, z3, z4) → (eiψz1, eiψz2, e−iψz3, e−iψz4). Then the pure
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spinors we start with are both of degree zero with respect to the action of ξ. This means

that we can take the bivector β to be constant. This does not lead to the problem described

above, and one can safely perform the reduction, getting a bihermitian structure on the

conifold.

Unfortunately, by taking β to be constant we have given up the NS flux as well. Also,

it should be emphasized that we have not changed the flat metric on C
4: the model we

start with is still the usual free sigma model, only with a very particular choice of a (2,2)

supersymmetry algebra. What one produces after reduction is a pair of non-commuting,

complex structures on the conifold, covariantly constant with respect to the Levi-Civita

connection given by the reduced metric. This metric has holonomy U(3); the Calabi-Yau

metric on the conifold is more complicated and is found by following the renormalization

group further down in the infrared.

So this bihermitian structure is not very interesting per se; it is, however, an example

in which the two complex structures I± do not commute. A way to see it is the following.

If I± commute, they are simultaneously diagonalizable; by looking at (3.1), we can produce

k eigenvectors of either J1 or J2 that are purely in T . In other words, the sum of the types

(see end of section 3.1) of the two pure spinors Φ1 and Φ2 is k.

For example, in the Kähler case, Φ1 = Ω is a k-form and has degree zero; Φ1 = eiω =

1 + iω + · · · has inside the differential form 1, which has degree zero, so the type of Φ2 is

zero. The sum of the two is k, and indeed in this case I+ = I−. After the deformation by

the bivector β, however, the type of Φ− is lowered; the sum of the two types can no longer

be zero, and by the reasoning above this means [I+, I−] 6= 0.

There are other constructions of generalized Kähler manifolds, but it is not obvious

whether they admit a hamiltonian action. Notably, the construction by Hitchin [33], that

closely parallels the physical construction in [3], appears to be fairly general; and the

even-dimensional semi-simple groups are bihermitian, as pointed out in [2]. It would be

interesting to consider their reduction.
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A. Details about supersymmetry

We raise and lower indices with the tensor ǫαβ, defined so that ǫ+− = 1. The derivatives

D± satisfy (D+)2 = i∂++, (D−)2 = i∂=. Some useful equalities are

DαDβ = i∂αβ − ǫαβD2 ; D2Dα = −DαD2 = −i∂αβDβ ; DαDβDα = 0 (A.1)

where D2 = D+D−.

Let us now look at the details of the computations in sections 2.5 and 2.6. The methods

are standard, if a little complicated; here we list some of the steps in which the computation

departs from the one for the ungauged model.
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For the variation of the action, it is useful to notice that

δ

δφm

(
∫

gnpD
Γ
+φnDΓ

−φp

)

= −gmn[DΓ
+,DΓ

−]φn − 2ΓmnpD
Γ
+φnDΓ

−φp

+(Γ+DΓ
−φn − Γ−DΓ

+φn)(Lξg)mn .

(In computing this, one needs ξm∂m(D+φn) = D+ξn.) This can then be specialized to the

variation under supersymmetry. Another slight modification is given by the integration by

parts. In the case of linear gaugings, for example, all the covariant derivatives are given

in the appropriate representation, so that any scalar is acted on by a straight derivative;

hence one can integrate covariant derivatives by parts. In the present case, however, a

function may still be transforming non-trivially under the vector ξ. One can, however,

integrate by parts the straight derivative, and add and subtract the connection piece, so

that for example

∫

A[mn]D
Γ
−DΓ

+φmDΓ
+φn =

∫

(

−
1

2
Amn,pD

Γ
−φpDΓ

+φmDΓ
+φn + Γ−DΓ

+φmDΓ
+φn(LξA)mn

)

.

Using all this, the total variation is

δS =

∫

ǫ+
[

2DΓ
−DΓ

+φmDΓ
+φn

(

− ω+
(mn)

)

+ DΓ
−φpDΓ

+φmDΓ
+φn

(

∇+
p ω+

mn

)

+
(

SDΓ
+φm + DΓ

+φnIm
+ n(D+Γ− + D−Γ+)

)

(

gmp ξp + αm − Ip
+m∂p µ

)

+SΓ+

(

αmξm
)

+ Γ+DΓ
+φmDΓ

−φn
(

Ip
+m(Lξg)pn

)

+ Γ+DΓ
−φmDΓ

−φn
(

Ip
+m(Lξg)pn

+(Lξω)mn

)]

+ǫ−
[

2DΓ
+DΓ

−φmDΓ
−φn

(

ω−
(mn)

)

+ DΓ
+φpDΓ

−φmDΓ
−φn

(

−∇−
p ω−

mn

)

+(SDΓ
−φm − DΓ

−φnIm
− n(D+Γ− + D−Γ+))

(

gmp ξp − αm − Ip
−m∂p µ

)

+SΓ−

(

− αmξm
)

+ Γ+DΓ
−φmDΓ

+φn
(

− Ip
−m(Lξg)pn

)

+Γ−DΓ
+φmDΓ

+φn
(

Ip
−m(Lξg)pn + (Lξω)mn

)]

.

Let us now look at the commutator of two second supersymmetry transformations.

The one on S is uneventful. For the one on Γ+, one only needs to add and subtract a term

ǫ+
1 ǫ+

2 D2
+Γ+; one piece goes towards building the right supersymmetry algebra, the other

goes to the gauge transformation Λ given in (2.27). The most complicated commutator is
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obviously the one evaluated on φm. One gets:

[δ1, δ2]φ
m = 2ǫ+

1 ǫ+
2

[

(I2
+)mn i∂++φn + (I+)mn(D+Γ+)ξn + DΓ

+φnDΓ
+φp

(

Nij(I+)mnp

)

−Γ+DΓ
+φn

(

(LξI+)mn

)]

+2ǫ−1 ǫ−2

[

(I2
−)mn i∂=φn + (I−)mn(D−Γ−)ξn + DΓ

−φnDΓ
−φp

(

Nij(I−)mnp

)

−Γ−DΓ
−φn

(

(LξI−)mn

)]

+(ǫ+
1 ǫ−2 + ǫ−1 ǫ+

2 )
[

S(I+ − I−)mn ξn +
1

2
[I+, I−]mn[DΓ

+,DΓ
−]φn (A.2)

+DΓ
+φnDΓ

−φp
(

Im
+ qI

q
−p,n + Im

+ n,qI
q
−p − Im

− qI
q
+n,p − Im

− p,qI
q
+n

)

+
1

2
{I+, I−}

m
nξn(D+Γ− + D−Γ+) + Γ+DΓ

−φn
(

− (LξI−)mn

)

+Γ−DΓ
+φn

(

− (LξI+)mn

)

We can now use some of the conditions coming from the action to massage the (ǫ+
1 ǫ−2 +ǫ−1 ǫ+

2 )

term in this result. First of all, one can show

[I+, I−]mq

(

Γ +
1

2
g−1H

)q

np = Im
+ qI

q
−p,n + Im

+ n,qI
q
−p − Im

− qI
q
+n,p − Im

− p,qI
q
+n , (A.3)

which is already useful in the ungauged case [1]. To derive this identity, note that since

I± are covariantly constant with respect to the connections Γ±, we can express ordinary

derivatives of I± in terms of I± and Γ±:

Im
± n,p = Γq

±pnIn
±q − Γm

± pqI
q
±n.

Substituting this into the expression on the r.h.s. of (A.3), using Γm
−np = Γm

+ pn, and col-

lecting similar terms, we get the expression on the l.h.s. of (A.3).

Using that Lξg = Lξω± = 0, we also get that LξI± = 0. Finally, from (3.3) we can

derive

[I+, I−]g−1α = (2 + {I+, I−})ξ , [I+, I−]g−1dµ = −2(I+ − I−)ξ . (A.4)

The first of these two has already been used in section 4. So the (ǫ+
1 ǫ−2 + ǫ−1 ǫ+

2 ) term

in (A.2) now reads

[I+, I−]mn

(

1

2
[DΓ

+,DΓ
−]φn + Γn

+pqD
Γ
+φpDΓ

−φq −
1

2
Sgnp∂pµ +

1

2
gnpαp(D+Γ− + D−Γ+)

)

−(D+Γ− + D−Γ+)ξm .

The first line is now proportional to the equation of motion for φ; the second is a piece of

the gauge transformation Λ we claimed in (2.27) — the other pieces having already been

obtained in (A.2). This completes the computation.
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